
Adding “I” To The Controller: The PI Controller (“I”: what have you done for me lately?)

To improve the response of our P controller we will add a new term to the equation. This term is called the integral, the “I” in PID.
Integrals are a very important part of advanced mathematics, fortunately the part we need is pretty straight forward.

The integral is the running sum of the error.

Yep, it’s that simple. There are a few subtle issues we’ll skip for the moment.

Each time we read the light sensor and calculate an error we will add that error to a variable we will call integral (clever eh?).

 integral = integral + error

That equation might look a little odd, and it is. It isn’t written as a mathematical statement, it is written in a common form used
in programming to add up a series of values. Mathematically it doesn’t make any sense. In computer programming the equals
sign has a somewhat different meaning than in math. (I’ll use the same typewriter font I used for the pseudo code examples to
highlight that it is a programming form and not a proper mathematical form.) The “=” means do the math on the right and save the
result in the variable named on the left. We want the computer to get the old value of integral, add the error to it then save the
result back in integral.

Next, just like the P term, we will multiply the integral by a proportionality constant, that’s another K. Since this proportionality
constant goes with the integral term we will call it Ki. Just like the proportional term we multiply the integral by the constant (Ki) to
get a correction. For our line following robot it is an addition to our Turn variable.

 Turn = Kp*(error) + Ki*(integral)

The above is the basic equation for a PI controller. Turn is our correction for the motors. The proportional term is Kp*(error) and
the integral term is Ki*(integral).

What exactly does the integral term do for us? If the error keeps the same sign for several loops the integral grows bigger and
bigger. For example, if we check the light sensor and calculate that the error is 1, then a short time later we check the sensor
again and the the error is 2, then the next time the error is 2 again, then the integral will be 1+2+2=5. The integral is 5 but
the error at this particular step is only 2. The integral can be a large factor in the correction but it usually takes a while for the
integral to build up to the point where it starts to contribute.

Another thing that the integral does is it helps remove small errors. If in our line follower the light sensor is pretty close to the
line’s edge, but not exactly on it, then the error will be small and it will only take a small correction to fix. You might be able to
fix that small error by changing Kp in the proportional term but that will often lead to a robot that oscillates (wobbles back and
forth). The integral term is perfect for fixing small errors. Since the integral adds up the errors, several consecutive small errors
eventually makes the integral big enough to make a difference.

One way to think about the integral term is that it is the controller’s “memory”. The integral is the cumulative history of the error
and gives the controller a method to fix errors that persist for a long time.

34

A PID Controller For LEGO® MINDSTORMS
Robots (Part 2)
We bring you the second and last part of the MINDSTORMS
tutorial. We hope you feel encouraged to send us more
suggestions
Text and pictures by J. Sluka

35

Some subtle issues with the integral

Yep, the integral has more detail. Fortunately they aren’t too painful.

I glossed over a minor issue (OK, it really isn’t minor but we are going to make it so), the time. The integral is really the sum of the
error*(delta time). Delta time (dT) is the time between the last time we checked the sensor and the time of the most recent check
of the sensor;

 integral = integral + error*(dT)

So every time we add to integral the thing we should add is the error times the dT. It is fairly easy to have the robot measure the
dT. We would just read a timer each time we read the light sensor. If we subtract the last time from the current time we get the
time since the last reading dT. (There are better ways to do this but I’ll skip’m since they are not needed.) But wouldn’t it be nice if
didn’t have to measure the dT and do the multiplication? Well, what if the dT is always the same? Every time we add to integral
we have that same dT term. So we can take that factor of dT out of error*(dT) and just do the summing the way we did before;

 integral = integral + error

Only when we want to do another calculation with integral do we actually need to multiply by dT. But wait there’s more...

We can do even more to hide the time term. The integral term in the PI controller equation is Ki*(integral)*dT. But Ki is a
parameter that we have to fine tune (just like Kp) so why not just replace the Ki*dT part with a new Ki? The new Ki is different
from the original but since we don’t know either one it doesn’t really matter which one we use or what we call it. No matter what
we call it or what it represents we still have to find the correct value largely by trial and error.

So we have completely removed the time element for the integral term with the restriction that all the times steps, dTs, are the
same (or about the same).

The integral has a memory like an elephant

One last detail should be mentioned about the integral. Usually the integral can only be moved towards zero, where it doesn’t
contribute anything to the controller, by having error values added that are the opposite sign of most of the ones that we have
already collected in integral. For example, if over several cycles through the loop the errors are 1,2,2,3,2,1 that adds up to an
integral of 11. But the error at the last data point is only 1, which is much smaller than the integral at that point. The only way for
the integral to move towards zero is to get a string of negative errors to counter balance the earlier string of positive errors to
“wind down” the integral. For example, if the next few errors are -2,-2,-3 then the integral will drop from 11 to 4 and we would still
need more negative errors to get the integral down to zero. In addition, the integral wants the total error to be evenly distributed
between positive and negative errors.

If something happens that pushes our line following robot to the left of the line’s edge the integral term not only wants to get
back to the line’s edge it also wants to overshoot the edge to the right by as much as the original disturbance was the left. So the
integral tends to “wind-up” if there are large errors that persist for a while. This can cause problems with controllers that include
an integral term. Sometimes this tendency of the integral term to want to overshoot when it tries to correct the error is a big
enough problem that the programmer must do something to the integral term so it won’t cause problems. If integral wind-up is
a problem two common solutions are (1) zero the integral, that is set the variable integral equal to zero, every time the error is
zero or the error changes sign. (2) “Dampen” the integral by multiplying the accumulated integral by a factor less than one when
a new integral is calculated. For example;

 integral = (2/3)*integral + error

This reduces the previous integral value by 1/3 each time through the loop. If you think of the integral term as the controllers
“memory” then this damping is forcing it to become forgetful of things that happened a “long” time ago.

Pseudo code for the PI controller

To add the integral term to the controller we need to add a new variable for Ki and one for the integral itself. And don’t forget that
we are multiplying our Ks by 100 to help with the integer math restrictions.

Kp = 1000 ! REMEMBER we are using Kp*100 so this is really 10 !
Ki = 100 ! REMEMBER we are using Ki*100 so this is really 1 !
offset = 45 ! Initialize the variables

Tp = 50

integral = 0 ! the place where we will store our integral
Loop forever

 LightValue = read light sensor ! what is the current light reading?
 error = LightValue - offset ! calculate the error by subtracting the offset
 integral = integral + error ! our new integral term
 Turn = Kp*error + Ki*integral ! the “P term” and the “I term”

 Turn = Turn/100 ! REMEMBER to undo the affect of the factor of 100 in Kp !
 powerA = Tp + Turn ! the power level for the A motor
 powerC = Tp - Turn ! the power level for the C motor
 MOTOR A direction=forward power=powerA ! actually issue the command in a MOTOR block
 MOTOR C direction=forward power=powerC ! actually issue the command in a MOTOR block
 end loop forever ! done with this loop, go back to the beginning and do it again.

Adding “D” To The Controller: The Full PID Controller (“D”: what is going to happen
next?)

Our controller now contains a proportional (P) term that tries to correct the current error and an integral (I) term that tries
to correct past errors is there a way for the controller to look ahead in time and perhaps try to correct error that hasn’t even
occurred yet?

Yes, and the solution is another concept from advanced mathematics called the derivative. Ahhh, there’s the “D” in PID. Like the
integral, the derivative can represent some pretty serious mathematics. Fortunately for us, what we need for the PID is fairly
simple.

We can look into the future by assuming that the next change in the error is the same as the last change in the error.

That means the next error is expected to be the current error plus the change in the error between the two preceding sensor
samples. The change in the error between two consecutive points is called the derivative. The derivative is the same as the
slope of a line.

That might sound a bit complex to calculate but it really isn’t too bad. A sample set of data will help illustrate how it works. Lets
assume that the current error is 2 and the error before that was 5. What would we predict the next error to be? Well, the change
in error is the derivative which is;

(the current error) - (the previous error)

which for our numbers is 2 - 5 = -3. The current derivative therefore is -3. To use the derivative to predict the next error we
would use

(next error) = (the current error) + (the current derivative)

which for our numbers is 2 + (-3) = -1. So we predict the next error will be -1. In practice we don’t actually go all the way and
predict the next error. Instead we just use the derivative directly in the controller equation.

The D term, like the I term, should actually include a time element, and the “official” D term is;

 Kd(derivative)/(dT)

Just as with the proportional and integral terms we have to multiply by a constant. Since this is the constant that goes with the
derivative it is called Kd. Notice also that for the derivative term we divide by dT whereas in the integral term we had multiplied
by dT. Don’t worry too much about why that is since we are going to do the same kinds of tricks to get rid of the dT from the
derivative term as we did for the integral term. The fraction Kd/dT is a constant if dT is the same for every loop. So we can
replace Kd/dT with another Kd. Since this K, like the previous Ks, is unknown and has to be determined by trial and error it
doesn’t matter if it is Kd/dT or just a new value for Kd.

We can now write the complete equation for a PID controller:

 Turn = Kp*(error) + Ki*(integral) + Kd*(derivative)

It is pretty obvious that “predicting the future” would be a handy thing to be able to do but how exactly does it help? And how
accurate is the prediction?

If the current error is worse than the previous error then the D term tries to correct the error. If he current error is better than
the previous error then the D term tries to stop the controller from correcting the error. It is the second case that is particularly
useful. If the error is getting close to zero then we are approaching the point where we want to stop correcting. Since the system
probably takes a while to respond to changes in the motors’ power we want to start reducing the motor power before the error
has actually gone to zero, otherwise we will overshoot. When put that way it might seem that the equation for the D term would
have to be more complex than it is, but it isn’t. The only thing you have to worry about is doing the subtraction in the correct order.
The correct order for this type of thing is “current” minus “previous”. So to calculate the derivative we take the current error and
subtract the previous error.

Pseudo code for the PID controller

To add the derivative term to the controller we need to add a new variable for Kd and a variable to remember the last error. And

36

don’t forget that we are multiplying our Ks by 100 to help with the integer math.

Kp = 1000 ! REMEMBER we are using Kp*100 so this is really 10 !
Ki = 100 ! REMEMBER we are using Ki*100 so this is really 1 !
Kd = 10000 ! REMEMBER we are using Kd*100 so this is really 100!
offset = 45 ! Initialize the variables

Tp = 50

integral = 0 ! the place where we will store our integral
lastError = 0 ! the place where we will store the last error value
derivative = 0 ! the place where we will store the derivative
Loop forever

 LightValue = read light sensor ! what is the current light reading?
 error = LightValue - offset ! calculate the error by subtracting the offset
 integral = integral + error ! calculate the integral

 derivative = error - lastError ! calculate the derivative
 Turn = Kp*error + Ki*integral + Kd*derivative ! the “P term” the “I term” and the “D term”
 Turn = Turn/100 ! REMEMBER to undo the affect of the factor of 100 in Kp, Ki and Kd!
 powerA = Tp + Turn ! the power level for the A motor
 powerC = Tp - Turn ! the power level for the C motor
 MOTOR A direction=forward power=PowerA ! actually issue the command in a MOTOR block
 MOTOR C direction=forward power=PowerC ! same for the other motor but using the other power level
 lastError = error ! save the current error so it can be the lastError next time around

end loop forever ! done with loop, go back and do it again.

We now have the pseudo code for our complete PID controller for a line following robot. Now comes what is often the tricky part,
“tuning” the PID. Tuning is the process of finding the best, or at least OK, values for Kp, Ki and Kd.

Tuning A PID Controller Without Complex Math (but we still have to do some math)

Very smart people have already figured out how to tune a PID controller. Since I’m not nearly as smart as they are, I’ll use what
they learned. It turns out that measurement of couple of parameters for the system allows you to calculate “pretty good” values
for Kp, Ki and Kd. It doesn’t matter much what the exact system is that is being controlled the tuning equations almost always
work pretty well. There are several techniques to calculate the Ks, one of is called the “Ziegler–Nichols Method” which is what we
will use. A google search will locate many web pages that describe this technique in all it’s gory detail. The version that I’ll use is
almost straight from the Wiki page on PID Controllers (the same treatment is found in many other places). I’ll just make one small
change by including the loop time (dT) in the calculations shown in the table below.

To tune your PID controller you follow these steps:
1. Set the Ki and Kd values to zero, which turns those terms off and makes the controller act like a simple P controller.
2. Set the Tp term to a smallish one. For our motors 25 might be a good place to start.
3. Set the Kp term to a “reasonable” value. What is “reasonable”?
 1. I just take the maximum value we want to send to the motor’s power control (100) and divide by the maximum
useable error value. For our line following robot we’ve assumed the maximum error is 5 so our guess at Kp is 100/5=20. When
the error is +5 the motor’s power will swing by 100 units. When the error is zero the motor’s power will sit at the Tp level.
 2. Or, just set Kp to 1 (or 100) and see what happens.
 3. If you have implemented that the K’s are all entered as 100 times their actual value you have to take that into account
here. 1 is entered as 100, 20 as 2000, 100 as 10000.
4. Run the robot and watch what it does. If it can’t follow the line and wanders off then increase Kp. If it oscillates wildly then
decrease Kp. Keep changing the Kp value until you find one that follows the line and gives noticeable oscillation but not really
wild ones. We will call this Kp value “Kc” (“critical gain” in the PID literature).
5. Using the Kc value as Kp, run the robot along the line and try to determine how fast it is oscillating. This can be tricky but
fortunately the measurement doesn’t have to be all that accurate. The oscillation period (Pc) is how long it takes the robot to
swing from one side of the line to the other then back to the side where it started. For typical LEGO robots Pc will probably be in
the range of about 0.5 seconds to a second or two.
6. You also need to know how fast the robot cycles through it’s control loop. I just set the loop to a fixed number of steps (like
10,000) and time how long the robot takes to finish (or have the robot do the timing and display the result.) The time per loop (dT)
is the measured time divided by the number of loops. For a full PID controller, written in NXT-G, without any added buzzes or
whistles, the dT will be in the range of 0.015 to 0.020 seconds per loop.
7. Use the table below to calculate a set of Kp, Ki, and Kc values. If you just want a P controller then use the line in the table
marked P to calculate the “correct” Kp (Ki’ and Kd’ are both zero). If you want a PI controller then use the next line. The full PID
controller is the bottom line.
8. If you have implemented that the K’s are all entered as 100 times their actual value you don’t have to take that into account in
these calculations. That factor of 100 is already take into account in the Kp = Kc value you determined.
9. Run the robot and see how it behaves.
10. Tweak the Kp, Ki and Kd values to get the best performance you can. You can start with fairly big tweaks, say 30% then try
smaller tweaks to get the optimal (or at least acceptable) performance.
11. Once you have a good set of K’s try to boost the Tp value, which controls the robot’s straight speed.
12. Re-tweak the K’s or perhaps even go back to step 1 and repeat the entire process for the new Tp value.

37

13. Keep repeating until the robot’s behavior is acceptable.

Ziegler–Nichols
method giving K’
values (loop times
considered to be
constant and equal
to dT)
Control Type Kp Ki’ Kd’

P 0.50Kc 0 0

PI 0.45Kc 1.2KpdT/ Pc 0

PID 0.60Kc 2KpdT / Pc KpPc / (8dT)

The primes (apostrophes) on the Ki’ and Kd’ are just to remind you that they are calculated assume dT is constant and dT has
been rolled into the K values.

I couldn’t find the equations for the PD controller. If anyone knows what they are please send me an email.

Here are the values I measured for my test robot (the one in the video linked later on). Kc was 300 and when Kp=Kc the robot
oscillated at about 0.8 seconds per oscillation so Pc is 0.8. I measured Pc by just counting out loud every time the robot swung
fully in a particular direction. I then compared my perception of how fast I was counting with “1-potato -- 2-potato -- 3-potato ...”.
That’s hardly “precision engineering” but it works well enough so we’ll call it “practical engineering”. The loop time, dT, is 0.014
seconds/loop determined by simply running the program for 10,000 loops and having the NXT display the run time. Using the
table above for a PID controller we get;

Kp = (0.60)(Kc) = (0.60)(300) = 180
Ki = 2(Kp)(dT) / (Pc) = 2(180)(0.014) / (0.8) = 6.3 (which is rounded to 6)
Kd = (Kp)(Pc) / ((8)(dT)) = (180)(0.8) / ((8)(0.014)) = 1286

After further trial and error tuning the final values were 220, 7, and 500 for Kp, Ki and Kd respectively. Remember that all of my
K’s are entered as 100x their actual value so the actual values are 2.2, 0.07 and 5.

How changes in Kp, Ki, and Kd affect the robots behavior

The table and method described above is a good starting point for optimizing your PID. Sometimes it helps to have a better idea
of what the result will be of increasing (or decreasing) one of the three Ks. The table below is available from many web sites. This
particular version is from the Wiki on PID controllers.

Effects of increasing
parameters

Parameter Rise time Overshoot Settling time Error at equilibrium

Kp Decrease Increase Small change Decrease

Ki Decrease Increase Increase Eliminate

Kd Indefinite (small
decrease or increase)

Decrease Decrease None

The “Rise Time” is how fast the robot tries to fix an error. In our sample case it is how fast the robot tries to get back to the line
edge after it has drifted off of it. The rise time is mostly controlled by Kp. A larger Kp will make the robot try to get back faster and
decreases the rise time. If Kp is too large the robot will overshoot.

The “Overshoot” is how far past the line edge the robot tends to go as it is responding to an error. For example, if the overshoot
is small then the robot doesn’t swing to the right of the line as it is trying to fix being to the left of the line. If the overshoot is large
then the robot swings well past the line edge as it tries to correct an error. Overshoot is largely controlled by the Kd term but is
strongly affected by the Ki and Kp terms. Usually to correct for too much overshoot you will want to increase Kd. Remember our
first very simple line follower, the one that could do nothing but turn right or left? That line follower has very bad overshoot. Indeed
that is about all it does.

The “settling time” is how long the robot takes to settle back down when it encounters a large change. In our line following case
a large change occurs when the robot encounters a turn. As the robot responds to the curve it will correct the error and then
overshoot by some amount. It then needs to correct the overshoot and might overshoot back the other way. It then needs to
correct the overshoot ... well, you get the idea. As the robot is responding to an error it will tend to oscillate around the desired
position. The “settling time” is how long that oscillation takes to dampen out to zero. The settling time responds strongly to both
the Ki and Kd terms. Bigger Ki gives longer settling times. Bigger Kd gives shorter settling time.

“Error at Equilibrium” is the error remaining as the system operates without being disturbed. For our line follower it would be the

38

offset from the line as the robot follows a long straight line. Often P and PD controllers will end up with this kind of error. It can
be reduced by increasing Kp but that may make the robot oscillate. Including an I term and increasing Ki will often fix a P or PD
controller that has a constant error at equilibrium. (This assumes you even care about a small remaining error as the robot follows
the line. It just means it is offset to one side or the other by a small amount.)

How well does it work?

Here’s a short video of a basic LEGO Mindstorms robot following the line on the test mat that comes with the set. The video
quality isn’t very good.

The light sensor is about 1/2” above the mat and offset to one side of the robot’s center line. The Tp (target power) was set at
70%. The robot averages about 8 inches per second on this course. The robot is a left hand line follower and is following the
inside edge of the oval. The inside edge is a bit harder to follow than the outside edge.

 MPEG4 - MP4 (644KB) QuickTime - MOV (972KB)

Overall the line follower appears to work pretty well. If you watch the video closely you’ll see the robot “wag its tail” a bit as it
comes off the corners. That’s the PID oscillating a little. When the robot is running towards the camera you can see the red spot
on the mat from the light sensor’s LED. It looks to be tracking the line’s edge pretty well.
The basic PID controller should work for many different control problems, and of course can be used as a P or PI controller
instead of a PID. You would need to come up with a new definition of the error and the PID would have to be tuned for the
particular task.
#

39

