
LDraw Tutorial Part 13

MILS with BlueBrick (II)

By Jetro

In the first part we saw how to create an image of a module
and prepare it for use in BlueBrick. In this second part we will
see how to add functionality to these modules.

Connection points

One of the strong points of BlueBrick is that it allows for
inclusion of connection points in a module. In the second
article on the MILS system which is published in this edition,
several elements have been introduced that can benefit from
these connection points.

BlueBrick already has several types of connections points (for
roads on baseplates, train tracks, DUPLO tracks and monorail
tracks) and the system can be easily expanded. To this end the
following steps must be taken:

1 - Define a connection type

Connection types are defined in the file ConnectionTypeList.
xml which is located in the Config folder of your BlueBrick
installation. The file can be easily edited using any text editor,
like notepad in Windows (to open it right click on the file and
select “open with” or open it directly from the program of your
choice. If you open it in a browser - usually the default option -
you won’t be able to edit it).

Between the tags <ConnectionTypeList> and </Connection
TypeList> you will find several blocks of code that look
(approximately) like this:

<ConnectionType name=”1”>
 <ColorARGB>FFFFFF00</ColorARGB>
 <Size>1</Size>
</ConnectionType>

The first field, <ConnectionType name=”1”> contains the name
of the connection type. In this case it is “1” which corresponds
to train tracks, but you can use a descriptive name for the
connection type, as long as you place it between quotes, for
example “MILS River”.

The second field, <ColorARGB>, indicates the colour of the
dot that will indicate the connection point in ARGB format. This
format is similar to RGB which you may already know, but is
preceded by two digits indicating the opacity of the colour. To
simplify things, you can use an RGB colour and precede it with
“FF”. In this way the LEGO colour Dark Blue, represented by
0A3463[1] would become FF0A3463.

The third field, <Size>, indicates the size of this dot.

In order to create a connection type for MILS Rivers, we could
add the following code to the list:

<ConnectionType name=”MILS River”>
 <ColorARGB>FFFFFF00</ColorARGB>
 <Size>1</Size>
</ConnectionType>

Repeat the process for all the connection points you are going
to need and save the file in its original location[2]

2 - Adding connection points to a module

To include these connection points in the corresponding
modules some lines need to be added to the XML file that goes
with the module. This file is located in the same folder as the
.gif image of the module, as was explained in the previous
article.

After the description of the module the tag <ConnexionList>
is added, after which the connection points of the module are
described.

The block of code will look like this:
<connexion>
 <type>MILS River</type>
 <position>
 <x>0</x>
 <y>-16</y>
 </position>
 <angle>-90</angle>
 <angleToPrev>-90</angleToPrev>
 <angleToNext>0</angleToNext>
 <nextConnexionPreference>1</
nextConnexionPreference>
</connexion>

Although it may look complex, it is actually quite simple.
Between the tags <type></type> the type of connection is
indicated. In this case it’s a MILS River Next the location of the
connection point is indicated. This is calculated from the centre
of the module, with X increasing from left to right and Y from
top to bottom. In this way the centres of the four edges of the
module have the following coordinates (starting at the top and
going clockwise). X=0, Y=-16; X=16, Y=0; X=0, Y=16 y X=-16,
Y=0. To make identifying these points easier I will call them A,
B, C and D [Table 1]

64

65

The field <angle> indicates the direction of each point. Since
in MILS this angle is always perpendicular to the border and
the 0º angle is in the direction of the X axis, the values are as
follows: A= -90, B=0, C=90, D=180.

 X Y Angle

A 0 -16 -90

B 16 0 0

C 0 16 90

D -16 0 180

The next fields, <angleToPrev> and <angleToNext> depend
on the number and location of the connection points. In this
example the values are always -90 and 90 respectively, but
you need to look at the angle between one point and the next
in each case and remember positive values are clockwise.

Finally there is the field <nextConnexionPreference>. This
serves to indicated which point is selected by default and in
what order the other points are selected. Keeping in mind that
this list begins with he number 0, if we want to follow the order
A, B, C, D we will have to indicate 1, 2, 3 and 4 respectively,
but of course this order can be changed to fit your preferences.
[3]

Why make connection points?

Connection points make it easier to place different elements in
the layout. After placing the first element you can rotate it using
the space bar until placing it in the desired orientation. After
that, using the enter key, you can select the next connection
point. Now with a simple click on any module in the Parts
pane on any module that can connect to this point it will do so
automatically. If you now use the space bar, the module will
only turn in such a way as to leave a
valid connection (it will never allow for
the connection of two different types of
points).

A second way to (re)create

a module

In addition to creating an DLraw version
of a module, it is possible to create
an image of a module with a different,
less time consuming process, although
there are some disadvantages

If you take a picture of the top view of a
module and crop it (using the process
described in the first part to create an
image from a virtual module) you can
get a representation of an existing
module with relatively little work.

However, you should keep in mind
the following inconveniences of this
method. In the first place, taking a
picture from a “bird’s eye view” of a
module isn’t as simple as it sounds.
The first hurdle is taking the picture
perfectly perpendicular to the centre
of the module. Otherwise, the picture
of the module will not be perfectly
square; if for example you take the
picture perpendicular to the base of the

module, the opposite side will look considerably shorter.

Another factor to keep in mind is the distance to the module.
The closer you get to the module, the more deformation there
will be at the edges of the picture, so it is a good idea to take
the picture from some distance and at a high resolution so later
you can crop the image and still get enough resolution for a
BlueBrick image.

Finally you should take into account the lighting. If the module
has some elevated parts it will be hard to avoid shadows in the
picture. At the same time, the colour of the module will almost
certainly be different from the ones made using LDraw and,
unless you manage to recreate the exact same circumstances,
modules photographed at different moments will also have
colour divergences.

The big advantage of this method, however, is that keeping
these factors in mind you can create a BlueBrick module in a
relatively short time.

[1] There is a complete list of RGB values for LEGO® colours
at http://beta.ldraw.org/article/547.html
[2] At the dedicated MILS website: www.abellon.net/MILS/
index.html there is a section where you can download a
modified file that contains the connection points explained in
this issue.
[3] At the dedicated MILS website: www.abellon.net/MILS/
index.html there is a section where you can download several
MILS modules and their corresponding XML files which may
serve as a basis for any other module.
#

