
52

POV-Ray Tutorial

By Eric Albretch

If you have been reading Jetro’s LDraw tutorials in
HispaBrick Magazine® or on TechnicBRICKs, then you
already know about the LDraw parts library and about
LDraw editors like MLCAD. You know how to install
unofficial parts (parts which are not officially released as
part of the LDraw library yet), create virtual models, and
how to look at them in viewers like LDView. Maybe you can
even generate complex flexible parts with LSynth. Perhaps
you have tried making your own instructions with LPub.
Now that you have spent so much time making a virtual
model, the logical next step is to make it beautiful.
Editors like MLCAD are efficient and quick at displaying
your models, but they do not use complex lighting or
smoothing so you get something like looks like this

Standalone viewers like LDView use real-time rendering
and, with the appropriate preferences selected, can
produce a much more striking image. This image has
smooth shading and anti-aliased edges. It looks good, but it
still doesn’t look real.

To really make your models shine, you need to use a
ray tracing program. These are complex programs with
very advanced capabilities, but the rewards for learning
them can be stunningly realistic images. This image was
produced by starting with the same LDraw file used for the
first image, but converted, enhanced, and rendered using
POV-Ray, a free (open source) ray tracer.

This tutorial will start by assuming that you have used the
LDraw All-in-One Installer and therefore already have the
following necessary software:

· LDraw library
· MLCAD (or another editor)
· LDView 4.1 or newer (PC or Mac)
· POV-Ray 3.6* (PC or Mac)
· LGEO library*

Items marked with an asterisk (*) are not installed by
default, so you may have to go back and install again and
make sure to select them. If you are using a Mac, you can
still do everything in this tutorial but you will have to install
the needed software manually because there is no All-
in-One installer. In addition to the above software, some
advanced features in later tutorials will require Mega-POV,
a POV-Ray patch, which you may choose to install now.
(http://megapov.inetart.net/)

A knowledge of the different types of files and how they
work will be invaluable in troubleshooting later. Let’s start
by reviewing what LDraw files really are, at their core.
LDraw files consist of nothing but lines, triangles, and
quadrilaterals. For purposes of rendering, we don’t care
about the edges because they will never be displayed in
a photo real image, so let’s forget about them. Triangles

53

and quads can only create surfaces, not solids, so LDraw
parts are hollow. Triangles and quads can also never create
curves, but can only approximate them with facets. This
means that the LDraw language is not very good for making
smooth, complex curvature.

LDraw parts are stored as text files in a library. Each part
file usually calls out “primitives” which are smaller portions
of parts which are used over and over (such as studs). An
LDraw model file is also a text file which calls out many
parts, assembles them in space, and assigns them colors.
The position and rotation in space are controlled with
a transformation matrix. You don’t need to know how a
transformation matrix works to use these tools, but it helps.
Below is a line from an LDraw model file which positions
a single red 2x4 brick in space. The first number, 1, just
means that this line is calling a part from the library. The
second number, 4, is the color red. The next 3 numbers, 0
0 0, are the position of the part in X Y Z space. The next 9
are a 3x3 matrix of the rotations in the X Y Z axes (this is
the hard part). Finally, 3001.dat is the part number for a 2x4
brick.

1 4 0 0 0 1 0 0 0 1 0 0 0 1 3001.dat

A LDraw model will be made up of hundreds or thousands
of these parts, possibly broken into submodels. In turn,
each part will be broken up into primitives, and each
primitive will be made of lines, triangles, and quads. All of
this put together forms your model. However, this language
is unique to LDraw and cannot be read by POV-Ray or any
other ray tracer. This means we need to convert it.

POV-Ray creates shapes using CSG (Constructive Solid
Geometry). This method involves starting with simple
solids such as cones, spheres, and boxes and then
combining them with Boolean operations such as addition
and intersection to create complex shapes. Obviously
this is a lot different than LDraw so the process to convert
from one to the other is not simple. Luckily for us, people
have already solved this problem for us. Also luckily for
us, POV-Ray places parts in space using the same sort of
transformation matrix as LDraw and also consists of text
files which call libraries of “include” files, so there are many
things which will look familiar.

There have been a number of tools over the years which
can perform the conversion from LDraw to POV-Ray, but
my current favorite is LDView. It does an excellent job and
will produce a good render without any further effort. With
minimal additional editing of the POV-Ray file, the results
can be improved even more. Finally, with advanced editing
and changes to some of the core libraries, truly stunning
results can be achieved.

Let’s work through an example from beginning to end using
the simplest settings. We’ll start with the model described
above: a file containing a single red 2x4 brick. Create a file
called brick.ldr that looks like this:

0 Brick Render
1 4 0 0 0 1 0 0 0 1 0 0 0 1 3001.dat

If you open this in LDView, you should see this:

When you export from LDView, it will also export the
view information including the position of the camera.
Let’s make this a little more interesting by changing the
amount of perspective and rotating the part a bit. Open
the preferences panel and change the field of view to 30
degrees. Now bring up the view window with CTRL-9 to
enter a latitude and longitude of 25 and 65. After that, your
model should look like this.

 Now it is time to export to POV-Ray. You can either use
CTRL-E or choose Export from the File menu. This will
bring up a dialog box asking you to name the file. Let’s
just call it “brick”. The extension “.pov” should be added
automatically. The “Type” should be “POV-Ray Scene File”.
If you click the “Options” button, you will see a lot of things
that can be configured about the POV conversion. We’re
going to start with all the defaults, except make sure you
change “Quality” to “Include Stud Logos” and scroll down
and deselect “Use XML Mapping File”. Now you can select
OK and save the file.

 Now run POV-Ray 3.6. If you open “brick.pov”, you should
see this. It will look a little different on a Mac.

POV-Ray needs to know what size image you intend to
make, and on Windows this is controlled in an ini file.
Luckily, you only need to take care of this once and then
POV-Ray will remember your settings. We want to try a
render at 640x480 using anti-aliasing. To do this, select

“Edit resolution ini file” from the “Tools” menu. A text editor
with a file called “QUICKRES” will come up, and you can
add this to the file:

[640x480, AA 0.3]
Width=640
Height=480
Antialias=On
Antialias_Threshold=0.3
Output_File_Type=N
Output_Alpha=On

Save the file and quit the text editor. This will add an option
called “640x480, AA 0.3” to a drop down menu that you
can see at the top left of the previous image. (Note that you
may have to quit and restart POV-Ray for the new option to
appear.) It sets the height and width of the image, adjusts
the anti-aliasing settings (which will smooth the edges), and
outputs a PNG file. Don’t worry about the details of the anti-
aliasing settings; we’ll just always leave them the same.
Now all you have to do is hit the “Run” button, and a few
seconds later you should have your first render.

This is a big improvement! But it has a long way to go.
You’ll probably notice that there are a lot of overlapping
shadows. You will also notice that, since this is a direct
conversion from LDraw, the edges are completely sharp
and square. LDView was smart enough to make the studs
look round for you instead of faceted and it also added the
stud logos, but this still doesn’t look like a real part. The
next big improvement we can make is to use the LGEO
library.
LGEO is a library of LEGO® parts made by Lutz Uhlmann
using the native CSG language of POV-Ray. This means he
wasn’t limited to just triangles and quads, but could make
almost any shape he wanted. He modeled the parts in
much more detail including softly curved edges. The LGEO
library of POV-Ray parts should also have been installed
by the All-in-One installer. In order to use it, we need to
make sure a couple of things are in place. Again, this is
something you should only need to do once. POV-Ray
needs to know where to find the LGEO library. Go to POV-
Ray and select “Edit master POVRAY.ini” from the “Tools”
menu. You’ll see a file which has some paths at the bottom.
Make sure that the All-in-One installer has added the path
to the LGEO library here. It should look something like this.

54

If it is not there, you may need to add it manually (the actual
location of this file depends on where you installed it on
your system).
Library_Path=”C:\Ldraw\LGEO\lg”
Remember when we exported from LDView and we
deselected “Use XML mapping file”? Now we want to turn
that back on. LDView comes with an XML file that maps
each LDraw part to its matching LGEO part and performs
scaling or rotations to make them line up. All you need to do
is select the mapping file that came with LDView. It should
be in your LDView directory. (Note that I have my own
customized file which makes some changes and additions
to the default file, but the default works fine.)

This time we’ll call the file “brick-lgeo”. If you have
configured everything right, this file should work in POV-
Ray without any further changes. Just open it and click
“Run”. Now you should get this.

You can see the rounded edges, the different color, and the
clearer logo. The LGEO library doesn’t contain every single
part that the LDraw library does, so in practice when you
export a large model some of the parts will be replaced with
LGEO equivalents and some of them will not. Usually this is
not a problem.
With the skills you’ve learned here, you should be able
to make basic renders. Although this tutorial may have
seemed complicated, once you get everything set up
the process is very quick. I can create the sample file
containing the brick, open it in LDView, export it, and render
the image above all in less than 30 seconds. In future
tutorials we’ll expand on what you’ve learned so that you
can understand the content of the POV-Ray file and modify
it to include more sophisticated light sources, use other
features like radiosity and high dynamic range lighting, add
backgrounds, and even create animations. After the next
lesson, you should be able to replace the last image with
this.

 Eventually, you should be able to do this.

Happy rendering!
#

55

