
56

In July I had the opportunity to participate in the course “Caring
robots”, organised by the universities of Windesheim Flevoland
in Almere (The Netherlands) and La Salle - Universitat Ramon
Llull in Barcelona. In this course, among other things, we
discussed what activities with robots can be done to help
in the rehabilitation of children with brain damage and in
the improvement of social skills of children with Autism. La
Salle - Universitat Ramon Llull is collaborating with Tufts
University, Massachusetts (USA), Deusto and Comillas in the
investigation that aims to determine if the use of robots in the
rehabilitation of children with brain damage has advantages
over more conventional methods.
One of the tasks that was proposed in the course, was the
creation of an activity that would later be tested with brain
damaged children in the Sant Joan de Déu hospital in
Barcelona, principal collaborator in the project of La Salle.
In this article I will present the activity, concentrating the
explanations on the programming task it involved.

The activity

One of the ideas that was proposed was the creation of a
game to stimulate the memory. After considering and analysing
the possibilities LEGO® MINDSTORMS Education offers,
the material that was available, it was decided that we would
create a game that involved remembering a sequence of
sounds. The robot should reproduce a sequence of up to four
tones (one for each entry port on the NXT) and the child should
repeat the sequence using the keyboard we were for create to
this end.
It was considered that remembering a sequence of tones
could be complicated for some children - due to the fact that
they are sounds - so it was decided to combine them with
some other kind of stimulus, in this case colours. In the LEGO
MINDSTORMS Education set there are three lamps that can
be fitted with three different coloured transparent pieces, which
allows for the inclusion of three lamps (red, green and yellow)
that can light up while reproducing the tones. Since there were
three lamps and also three entry ports it was decided to reduce
the keyboard to three keys.
What would happen if the child enter the right sequence? In
addition to the applause and a smiley face on the NXT display
it was thought that it would be nice to include some kind of
reward to add to the fun. To this end a mobile robot with a
light sensor was built, which would advance or move back
over a white surface with black transversal lines; with a right
sequence it would advance, with a wrong one it would go back.
The objective of the game was to make the robot reach the last
line.

The game console

When building the game console the requirements were the
following:
● Three touch sensors with sufficiently big and separated keys

 to be used by kids.
● Three lamps with a coloured cap aligned with the keys.
● A structure that would allow for the console to be set on the
 table so as to allow easy access to the NXT screen and the
 NXT keys.

Since there were no additional LEGO parts in the three
colours, stickers were used to identify each key.

The program

I will not go into every detail of the program, as this would
make the article too long, but I will comment on some of the
aspects I consider to be of interest.

The program of the console consisted of the following parts:
1. Establish a Bluetooth connection
2. Present the instructions
3. Practice with the keyboard: in order to get to know the
 keyboard. When pressing a key, a sound is reproduced and
 the corresponding lamp lights up. Upon pressing the orange
 button the program advances.
4. The game
 a. Choose a level: Training (a sequence of 3 tones/
 colours), Basic (4), Medium (5) y Advanced (6)[1]
 b. The game itself: generate a random sequence;
 reproducing it; registering the key strokes; checking
 the result and giving feedback

An introduction to Robotics with LEGO®
MINDSTORMS (XII)

Social Use of LEGO® MINDSTORMS
By Koldo Olaskoaga

57

The program was built in a modular fashion, so each part could
be tested separately before moving on to the next. New blocks
were created whenever possible. The following image shows
the first three steps of the program, each one converted into a
new block.

Let’s leave the first two steps aside and concentrate on the
third. In this step you can practice with the keyboard and check
how it works for as long as you like. The program continues
and starts the game when the orange button on the NXT is
pressed.
To this end, the NXT needs to read three touch sensors and
the orange button sequentially until one of them is pressed.
It uses a boolean OR to determine if one of the sensors has
been touched. If so, it exits the loop and reproduced the sound
or continues with the program.

Once one of the keys or the orange button on the NXT has
been touched, the corresponding note is played and one of the
lamps lights up, or the program exits the practice stage.
This step can be done with a Conditional (If... Else...), but in
order to avoid adding one inside another we converted the
input into a number. 1, 2 or 3, depending on the key. This can
be seen better in the following fragment of the program:

We take advantage of the fact that one of the outputs of
the block is Read Touch Sensor, which gives a value of
1 if touched and 0 if not. Leaving the first value at 0 or 1,
multiplying the second value by 2 and the third value by 3
and then adding these values we’ll know which key has been
pressed. In case if the orange button has been pressed the
value will be 0. At the end you can see the block to make the
sound and light the lamp which has been turned into a new
block as it will be used several times in the program. The
content is as follows:

After practice it is time to play. First the desired play level must
be selected. To this end the grey arrow keys are used to select

the level and the orange button to confirm the selection and
start the game. The steps to follow are these:
1. Show options
2. Create a variable to store the level and set it to 0.
3. Show the level that corresponds to this value
4. Start a loop that will not end until the orange button is
 pressed:
 a. Wait for one of the three buttons to be pressed
 (orange or grey arrows)
 b. If it is one of the arrow, add or subtract 1 from the
 variable and show the new selection (there are four
 levels and the value must be between 1 and 4).
 Care must be taken not to fall out of the range
 when adding or subtracting and that the result is
 never 0 or 5.

In the image you can see the code that runs when the let arrow
is pressed. If the contents of the variable Selection is bigger
than 1, one is subtracted and shown on the screen, otherwise
it is left as is.
When representing the options and the current selection some
precautions must be taken. The View block has a verification
box which erases everything if checked. For showing the level
a conditional could be used, but it can be done more directly
using the blocks that allow text operations. When an option is
changed, the numeric value is converted into text and a dash
is added before and after (simply for aesthetic reasons). The
resulting text chain is written on line 8, overwriting the previous
selection.

After selecting the level it is time to play, so the program picks
a random tone, reproduces it (lighting up the corresponding
lamp at the same time) and stores it. This is repeated as many
times as the selected level requires.

The most direct way of storing a sequence of notes would be
in a matrix, but since NXT-G does not have standard support
for matrices we chose a different method. We used a single
numeric value in which the tone (a value from 1 to 3) is stored
in the position of units, tens and hundreds. To do this, after
generating the tone with the Random block (with a value of
1-3), the following calculation is carried out:

New value = Tone*10 + previous value

[1] g_GenerateSo: This block generates the sound sequence. The entry level is 1-4 and the exit level is a
number that represents a sequence of between 3 and 6 sounds/colours.

So for each note the steps shown in the picture are carried out.

This is where the g_playsound block, which we saw earlier,
is reused and a new one is created to convert the value as
explained above.

When the user enters a sequence via the keyboard the
same operation is carried out, so in the end the value that is
generated can be compared to the stored value.

The loop that allows the user to introduce the sequence is as
follows:
1. Wait for a key to be touched and convert the value into a
 number from 1 to 3 (g_sensorNum)
2. Reproduce the sound ad light up the corresponding lamp
 (g_playsound)
3. Register the choice as seen before (bloque g_convertNum),
 in this case the variable is PlayedSound.
4. Add a unit to the variable nLevel (which stores the level with
 a value of 1 to 4) and compare it to the number of completed
 loops. If the result is True it means the sequence has ended.

This loop needs to run more or less times depending on the
level: the value that represents the level +2, that is to say,
between 3 and 6 times. In order to keep count, instead of
creating a variable that acts as a counter we used the counter
of the loop. The connector of the counter is shown on the left
of the loop (you need to check the box for the corresponding
entry in the Loop configuration panel to see it). The value
obtained from this connector is the number of completed loops.
For this reason the value of the counter is compared to the
value of nLevel +1.
Now what remains is to compare the reproduced sequence to
the one generated previously. If they match, a smiley face is
shown on the screen and you hear applause, otherwise, a sad

face is shown and an error sound generated. Additionally a
True or False signal is sent to the vehicle by Bluetooth.
The original program allowed for 5 opportunities to get the
vehicle to the finish line.

The vehicle

The vehicle was very simple, as the only requirement was the
possibility to advance or go back to the next line. We could
even have used a single motor and a sensor looking down.

The program is waiting to receive a True or False message
from the game console. After receiving it, if the value of the
message is True it will advance till the next line, while if the
signal is False is will go back (unless it is at the starting line).
The program registers the number of tries and the position, so
when 5 attempts are reached it goes back to the start position,
whether it has reached the finish line or not (in the first case
only after reproducing a triumphant sound).
It is important for the robot to control where it is regarding
to the starting line, that is to say, whether it needs to cross it
first or not. This was something that gave a lot of errors when
programming the vehicle.

Putting it into practice

The activity was tested at the Sant Joan de Déu hospital in
Barcelona with several children with Brain Damage. While the
test conditions were insufficient to draw conclusions, it was
observed that little children focussed completely on the vehicle,
forgetting the other part of the game. On the other hand, in
some cases three tones/colours were too much to start; two
tones and colours would have sufficed.
From a human point of view it was a very enriching experience,
thanks to the collaboration of the hospital and the participating
families.

Possible improvements

● Use of the keys to control the menu with less able hands.
● While this was not considered originally, the mobile robot
 could pick something up and bring it to the user as a reward
 for finishing the exercise.

This activity was the result of teamwork in which the following
people participated: Chang Long Zhu, Juan Pablo Forero,
Louellen Palm and myself.
#

58

