
60

A sensor (also called detector) is a converter that measures 
a physical quantity and converts it into a signal which can 
be read by an observer or by an (today mostly electronic) 
instrument[1]. These signals can correspond to light intensity, 
distance, acceleration, inclination, temperature, sound 
pressure...

In the real world, the environmental conditions can affect 
the readings of sensors and sometimes this can cause real 
headaches. In the case of light sensors, the light conditions 
can cause a robot that performed its task perfectly in the space 
where it was created, to be incapable of doing the same in 
another place: what the sensor saw as white in one place it 
sees as grey in another.

So, in the real working space it is necessary to tell the robot 
what is white and what is black, i.e. to calibrate the sensor.

Basic calibration of a light sensor

There are two standard methods of calibrating a light sensor in 
NXT-G. The first is by means of the Calibrate sensors option 
that can be found in the Tools menu of NXT-G and the second 
is to create a small program with the Calibrate block from the 
Advanced menu.

These tow methods allow for a single calibration for all light 
sensors attached to the NXT, so if we wish to use different 
calibrations for different sensors or two different calibrations for 
a single sensor we’ll need to use a different strategy; we’ll do 
so using the possibility the NXT has to store data in a file and 
read it later.

Before we get into this let’s have a look at how files can be 
used.

Use of files in NXT-G

NXT-G allows you to store information in text files. These files 
can be read from the same or from another program and be 
transferred to the computer to analyse the data.

This data can be text or numbers, for example, the readings of 
a sensor...

In general terms, the steps to do this are as follows:

1. Write to the file
2. Close the file
3. Read from the file.

In each case the same block is used: File access, configured 
according to the need for each case.

Creating a file

The first step is to create a file. Since we are likely to run the 
program more than once, the first thing to do is to delete the 
file that was created previously, since otherwise the information 
will be added to the existing file.

In the picture you can see a File access block that has been 
configured to delete a file named MiArchivo.

Once the file has been eliminated we can create the file again 
and start to write to it. There is no specific mode for creating a 
file: the file is created the first time you write to it.

the data the file can hold can be text or numbers. The block 
in the following image writes a numeric value to a file named 
Datos.

An introduction to Robotics with LEGO®  
MINDSTORMS (XIV)

Multiple calibrations of light sensors
By Koldo Olaskoaga

[1]  http://es.wikipedia.org/wiki/Sensor



61

We’ll use this file as many times as necessary to store new 
values in.

Closing the file

Before reading the data you need to close the file, configuring 
the File access block as you can see in the following image.

Example

Let’s see how this technique can be applied with an example. 
The ideas is to register the variation of the temperature in time: 
during a heating or cooling process, room temperature... To 
do this we’ll use the LEGO MINDSTORMS NXT temperature 
sensor.
After registering the values we’ll transfer the file to the 
computer and convert it into a graph that makes interpreting 
the data easier.
This is something that can be dode more easily with the data 
logging mode of NXT-G Edu, but not with the Retail version. 
On the other hand, the use of a file allows for a more flexible 
data collection.

In the example, for which you can see the code in the following 
image, the temperature is measured every second during 100 
seconds. This means there will be 100 values registered.

 
This program first deletes the file (named DatosTemp in 
this case). Then it opens a loop (Loop block configured with 
a counter) that will repeat 100 times. The loop reads the 
temperature sensor that 
is connected to port 1, 
writes the value to the 
file and waits 1 second 
before repeating the 
operation. After 100 times 
it closes the file and the 
program exits.
To transfer the file to a 
computer first you need 
to open the NXT window, 
clicking on the top left 
button in the controller.

 

In the NXT window select the Memory tab and inside that 
Others and you’ll be able to see the files on your NXT, 
including the one created in this example.
 

If you click on Load you can transfer the file (DataTemp.txt) to 
the folder of your choice on your computer.

After this you can open the file in a spreadsheet, in my case 
LibreOffice Calc. AFter opening the file you will observe that 
NXT-G uses a period to separate decimals, but the SPanish 
version of LibreOffice Calc will not interpret those values as 
numerical, so we need substitute the periods with commas 
(Find and replace). Using the Insert Graph tool you can get a 
graphical representation of the temperatures as can be seen in 
the following image.

 
Reading the data

Now let’s see how you can read data from a previously stored 
file. Before doing so I should point out that reading is done 
sequentially, so data is read in the order it was written: you 
cannot read the third value before reading the first and second.

You can read the values from a file in the same program it 
was created in or on any other program. In this case we’ll do 
so from a second program; we will read the values that were 
stored in DataTemp and represent them on the screen of the 
NXT.

The program is as follows:



The program consists of a loop that is repeated as many 
times as there is data to read. To ensure the graph stays on 
the screen for as long as needed, a Wait block has been 
added, configured for a touch sensor. In fact none needs to 
be connected, as the program will not end until the grey NXT 
button is pushed.

The View block allows you to draw dots at any desired 
location, based on the x and y coordinates of the point. 
In this case the “x” will be the number of the order of the 
measurements and the “y” the temperature. The File access 
block is configured in read mode and the Number exit is 
connected to the “y” entry of the View block. The value for “x” 
will be obtained from the counter of the loop.
In this way we’ll get the same graph we’ve seen earlier on the 
computer, displayed on the screen of the NXT.

Calibrating more than one sensor

Now that we know how to use files in NXT-G let’s see another 
way of calibrating a sensor.

In the calibration modes I described at the beginning of the 
article, the program automatically creates a file and reads it 
each time the light sensor is used without us noticing it. What 
we will do now is create a file with the necessary data for 
calibration and use it each time we need it.

Creating a calibration file

To create the calibration file we need to read and save the 
maximum and minimum values the sensor reads in the real 
situation. This is usually done by placing the sensor over first 
the lightest and then the darkest area, but in this case we’ll 
do it differently: we will move the robot in the same way it 
does when it carries out its task and register the maximum 
and minimum values. Next we will save those values in the 
corresponding file.

First let’s see what steps need to be taken.

1. Create two variables (valorMAX and valorMIN) to store the 
    maximum and minimum light values.
2. Initialise the variables with valorMAX=0 and valorMin=1023 
    (in stead of using a percentage we will use the direct value 
    with is somewhere between 0 and 1023).
3. Eliminate the calibration file (Calibra1).
4. Start the loop, which will run for 5 seconds, with the 

following steps:
 a. read the value of the light sensor
 b. compare the value to valorMAX; if the value is 
     greater, store the new value in the variable
 c. compare the value with valorMIN. If it is less than 
     the stored value, save the value to the variable.
5. After closing the loop, write the contents of valorMIN to 
    Calibra1 and do the same for valoMAX.
6. Close the file Calibra1.

Now we have a calibration file stored on the NXT. This is a 
basic algorithm to which movement can be added, so that 
instead of the user moving the robot over light and dark areas, 
the robot itself can move (ensuring that the movement of the 
robot over the line is completely accurate).

 
After creating the variables in the Define variables option of 
the Edit menu, we will execute steps 2 and 3 as in the previous 
image.
 

In this code fragment (steps 3a and 3b) you can see how the 
value of the reading from the light sensor on port 1 is obtained 
and compared to the value of the variable valorMIN. If it is 
less than this value it is stored in the variable, else it continues 
(the wiring is slightly mixed up due to the automatic wire 
organisation of NXT-G).
 

Next the program compares the reading to the value of 
valorMAX and if it is greater it is saved to the variable (step 
3c).

62



 
After storing the contents of the two variables in the file and 
closing it, this first part is finished.

The same could be done for sensors connected to other NXT 
ports. We would create a new calibration file for each sensor 
we would want to calibrate differently. As for the program 
that would use these calibrations, I have assigned the name 
Calibra1 to the file corresponding to the sensor connected to 
port 1, Calibra2 for port 2 etc.

Using the calibration file

Let’s see how we can use the values saved in the file. We 
have save the maximum and minimum values that were read 
under specific light conditions. Now we are going to use some 
mathematics to convert these two values into 0 (corresponding 
to the darkest reading, or “black”) and 100 (corresponding to 
the lightest reading, or “white”).

We can do this in two steps:

1. After reading the light value with the sensor, apply a 
    proportional rule to calculate the result in a range of 0-100.
2. The direct light value the sensor gives is somewhere 
    between 0 and 1023 (and since we have used that range 
    in the file we need to use it here also), but a value of 0 
    corresponds to high luminosity (white) and 1023 to lack of 
    light (black). If we want to convert this to the standard used 
    in NXT-G (from 0 for dark to 100 for bright) we need to 
    subtract 100 from the previous value.

Let’s see an example program that serves to test all this and 
that can be recycled for any other application. The program, as 
seen in the following figure, will show the calibration value of a 
read on the screen in real time.
 

In the program in the image, the new block called Calibra 
reads the sensor that is connected to port 1 and returns the 
calibrated value. The rest of the code is to continuously show 
the readings on the NXT screen. So let’s see the inside of the 
Calibra block.

This block takes a number as an entry that corresponds to the 
port the sensor we are reading is connected to. If you name 
the files as described previously, it can return the calibrated 
value of sensors connected different ports with different 
calibrations.

The algorithm is as follows:

1. Create a file name with a text operation: convert the port 
    number into text and add it to the word Calibra so that if the 
    sensor port is 1, the file will be Calibra1.
2. Read the first value in the file and store it in the variable 
    Vmin that was previously created.
3. Read the second value in the file and store it in the variable 
    Vmax that was previously created.
4. Close the file.
5. Read the value of the light sensor connected to the port that 
    corresponds to the entry (direct value).
6. Convert the reading into a calibrated value between 0 and 
    100 to store it the variable Vcal, with the following formula:

 Vcal=[(Lectura-Vmin)/(Vmax-Vmin)]*100

7. Check if the result is less than 0, in which case it becomes 
    0.
8. Check if the result is more than 100, in which case it 
    becomes 100.
9. Subtract the previous value from 100 to get the exit value.

 
In this first image you can see the first 5 steps.

After that the calculation is made.

Finally, test to see if the result is in the normalised range.

Final remarks
From here each one can adapt the program to his needs: 
different calibrations for different sensors or different 
calibrations for the same sensor. This means you need to 
create as many files as you need different calibrations.
#

63


