
This article will discuss how to create a simple program that
measures the user’s reaction time. The program will be created
using Open Lab Roberta.

Challenge

Create a program that measures the speed of reaction to a
light stimulus.

To achieve this, I am going to use the same electronic device
that I used for the LEGO MINDSTORMS article (HispaBrick
#15), that which I later completed and published with more
detail in Issuu [1]: 3 different colored buttons corresponding to
three different colored lights all connected to NXT. However,
I have updated it to EV3 as can be seen in the picture and in
this case using the EV3 light.

As a stimulant, I will use EV3’s very own light. After pressing
the corresponding key the achieved time will be shown on the
screen.

Program

The fi nal objective will be to create a program that has the
following characteristics:

- A green,orange,or red light will be turned on and one will have
 to click on the corresponding key.
- The light be turned on for a margin of time between 2 and 5
 seconds.
- 3 attempts will be given and after each the achieved time will
 be shown as well as the best time thus far.
- The necessary instructions will be shown on the screen.

Starting everything at once isn’t recommended, it is always
best to divide the challenges into smaller challenges that
can be combined later little by little to create something
more complex.Therefore we will start by looking at just one
corresponding button, covering the other objectives step by
step.

As always, before creating the program in the desired
language, it is best to write the algorithm in your natural
language, meaning, in your fi rst language.

Step 1

Objective: When the green light turns on, the green button
must be hit. Afterward the elapsed amount of time will be
shown on the screen.

Let’s look at the following steps,that is, the algorithm:
1. Create a variable that allows the amount of time elapsed

 before the button has been clicked to be stored.
2. Turn on the green light (EV3).
3. Start the stopwatch (the EV3 timer and stopwatch are
 continuously running, so what you need to do is reset them
 to zero when you want to begin counting).
4. Wait until the green button is pressed (EV3’s port 1).
5. Store the result in a variable (the timers can’t be stopped,
 but the result can be assigned to a variable when desired,
 so you can record the value at any given time).
6. Show the result on the screen.

Once we have the algorithm, we can then convert the program
into the desired language. In this case I am going to use Open
Roberta Lab (NEPO from here on),a program which we talked
about in the previous issue of HispaBrick Magazine, although
using EV3-G would be much the same. You have to select
the expert mode NEPO-blocks as there are some blocks not
present in the beginner mode.

The Program: in NEPO the variables are defi ned in the
program-start block,all that is needed to create one is to press
on the plus sign.This way we can give each their own name,
indicate what kind of variable they deal with (there are 9
different kinds) and assign it an initial value.

After turning on the EV3 green light, you have to reset the
timer to zero, there are 5 different timers available, in this case
we will use number 1.

The process of creating the instruction that will pause the
program until the green key has been pressed (above the
touch sensor connected to port 1) is very similar to that used
in Scratch. Here we use the Wait Until block, that can be
found in the control menu Control > Wait to which we need
to connect a logic operator. In this case it is to see if the touch
sensor connected to port 1 has been pressed.

Once the program can continue the value of timer 1 is
assigned to the variable Time. This value will be expressed in
milliseconds.

Game: Reaction Time Test

By Koldo Olaskoaga

Pictures by Koldo Olaskoaga

35

All that is left is to show on the screen is the achieved time.

Now hit execute and observe the following happening:

- The green light turns on as soon as the program starts
- It does not show the reading on the screen as the program
 exits as soon as it fi nishes.

The reason is that we haven’t marked the runtimes that we
are interest in. We haven’t asked it to wait a bit to turn on the
green light after the execution. We haven’t given it proper time
to show the reading on the screen,proper time, because in fact,
the result was shown, but once shown, the program is ended
right away and we haven’t been able to take it in. These are
two things that we will fi x by introducing several changes.

What we will change: Once the program begins, it will wait a
period of time between 2 and 5 seconds before turning on the
green light and at the end of the program we will include a wait
of 5 seconds so that we are given time to see the achieved
result (the changes appear in bold text in the algorithm).

1. Create a variable to be able to store the time
2. Wait between 2 and 5 seconds

3. Turn on the green light
4. Start the stopwatch
5. Wait until the green button is pressed (port 1)
6. Store the stopwatch reading in a variable
7. Show the result on the screen
8. Wait 5 seconds

A random start up time between 2 and 5 seconds is like
throwing a die and seeing how it falls, except in this case the
number of results are much higher.Given that the control block
wait asks that the time be given in milliseconds, you would
have to calculate a number between 2000 and 5000, even
though you can also calculate a number between 2 and 5 later
multiply it by 1000.

Toward the end of the program a wait block is added to give
time to read the result.

As you can see, the blocks that were in the fi rst program have
been made so they occupy less space. This can be done by
right clicking on the block that you wish to collapse.

Upon executing the new program we can see that the two
previous problems have been solved and that we have
successfully responded to that which was asked of us for step
1. However, in the challenge it asked that 3 rounds be played,
with that said, let’s go to step 2.

Step 2

Objective: when the program begins,the name of the game
will appear on the screen along with a message that asks that
the user press on the green key to continue. After a 2 to 5
second wait, the green light will turn on and once the green key
has been hit, the reaction time will be shown on the screen as
well as the best time thus far. After 2 seconds the program will
continue. This will be done 3 times before coming to an end.

The new algorithm includes the following:

1. Create time and best result variables
2. Show on the screen the name of the game and a text

 that asks the user to press the green key to continue.

3. Repeat the following steps

 a. Wait for the green key to be hit

 b. Wait 2 to 5 seconds for startup
 c. Turn on the green light
 d. Start the stopwatch
 e. Wait until the green key has been hit
 f. Store the stopwatch reading in a variable
 g. Compare the new result with the one stored in

 the best result variable

 i. If the value of the Time variable is

 lower than the Best result variable,

 store in the best result variable the new

 value

 h. Show the reading on the screen, along with the
 best result thus far.
 i. Wait 2 seconds

Even though in the prior step we saw how to create a variable
and initiate it, we are going to see a peculiarity with the new
variable “Best Result”. This variable has to save the best
result that has been achieved up that point so that it can be
compared with the current result (step 3g of the algorithm).
To see if there has been an improvement, compare the new
result with the best achieved value,and if it is higher, the old
best result will be replaced. ver si ha habido mejora comparará
el nuevo resultado con su valor, y si es menor lo sustituirá.
So the starting value needs to be big enough so that after the
fi rst attempt, when the comparison is executed, the compared
value is less than the initial value. This value is then updated
with the new reaction time. A safe value that will ensure it is
bigger than the expected reaction time is 9999 milliseconds,
but apart from this we could have chosen any other high
enough value.

Once the program begins the name of the of the game as well
as instructions in two different rows.

36

Then, a Loop begins that will be repeated 3 times, this block can be found in the Control menu. The fi rst instruction that we see
inside is the “wait until the green touch sensor is pressed” (touch sensor port 1) before a new attempt begins.

What comes next is the same as what we had in step 1 until we got to the comparing a new result with the best result. In this
case we will need to use a conditional control structure, that is, one of the blocks that appears under Control > Decisions. In this
case, if the result has a value that is less than what is stored in the variable BestResult, it will substitute the value for the new
one. If not, the block will exit without making any changes.

Now all that is left is to show the results. It can be done in the same way as the previous step, we are going to see how to
combine the result with the text we want. In the Text menu we have several blocks that allow you to manipulate text chains. One
of them can be seen in the following image that allows you to create. One of them can be seen in the next image and allows you
generate a sentence, combining text strings with the result we just generated. We will do the same for the best result, but on a
different line.

So far the program is going the way we wanted, but there are still some small things left to be corrected:

- the green light stays on all the time: we need to turn it off when we no longer need it
- the width of the screen is limited, so if we want to show a text that is longer than the width we need to cut the text and display
 each fragment on a separate line.
- the text chains are superimposed: when we tell the program to display a new text chain we only delete the area that is
 overwritten, so we need to clear the screen before showing new text..

These improvements are easy enough that you can work them out by yourself..

Step 3

Objetive: incorporate a second key. Now you won’t know which of the two will light up and you will have to press the right key for
the program to advance.

1. Create the variables
2. Show the name of the game on the screen and a text that
 asks you to press any key to continue
3. Repeat the following steps
 a. Wait until a key is pressed
 b. Clear the screen

 c. Wait a random time between 2 and 5 seconds
 d. Randomly select which light to turn on:

 i. If it is the fi rst one: turn on the green light, start the stopwatch and wait for the green button to be

 pressed

 ii. If not: turn on the red light, start the stopwatch and wait for the red button to be pressed

 e. Store the value of the reading of the stopwatch in a variable
 f. Switch off the light

 g. Compare the new value to the value stored in BestResult
 i. If it is less, store the new value in the variable BestResult
 h. Show the reading on the screen as well as the minimum value and a message asking to press a key to continue
 i. Wait until no key is pressed

4. Wait for 2 seconds

37

The program starts in the same way. However, now any of the keys that are used can be pressed, in this case both red and
green. This requires a modifi cation of the block that waits for the key press before starting the sequence. Now it will have to wait
for one or the other key to be pressed, so the logic operator OR is needed.

After clearing the screen and waiting for the light to turn on it is time to decide which light will turn on and then wait for the
corresponding key to be pressed. To take this decision we are going to generate a random number between 1 and 2. If it is 1 we
will turn on the green light, if it is 2 the red light. After turning on the light, the stopwatch is restarted and the program waits for the
correct key to be pressed. If the wrong key is pressed nothing will happen - the program will simply continue waiting for the right
key to be pressed. When the right key is pressed the program will continue and assign the result to the variable Time.

After turning off the light it checks if the time is better than the previous one or not, using the same method as before. After
presenting the result on the screen the program shows text indicating that in order to continue you need to press one of the
keys. No 2 second wait is necessary. This is where the algorithm “wait until no key is pressed” comes in. Bear in mind that
instructions in a program are executed at lightning speed, so it could happen that when you remove the 2 second wait, the
program continues with the next loop without pausing to show the result. This is due to the fact that the program may execute in
less time than it takes to release any of the keys. EV3-G has an option for the touch sensor which is “wait for press or release”,
which would solve this issue, but this option is not (yet) available in NEPO. In this case, the difference with the previous logic
operator is that now both keys need to be released so we will use the logic operator AND.

How to continue

The examples shown above are not the only two possible algorithms for this challenge and can surely be improved. The following
are some ideas to optimise them:

 - Modify the program for a third key
 - Instead of using a light to identify the right key, use a sound or tones that can be associated to the keys.
 - In addition to showing the best result, show the average response time.
 - If you press a key too early an error sound is reproduced or you lose the game.
 - Convert milliseconds in seconds before showing the result on the screen
 - Create the program in a different programming environment
 - Have the program ask the user for a name and store both the name and the results in a fi le. For now this cannot be
 done in NEPO, but it is possible in other programming environments that allow the use of fi les

[1] https://issuu.com/koldo_lrobotikas/docs/memorygame
#

About the autor

About.me/koldo_olaskoaga

38

