
I. Introduction

Let’s be clear: nothing really beats playing with real bricks, no
doubt about that. However there is something somewhat close
to it which can be appealing as well.
About 10 years when I was still in my own dark age not
thinking about LEGO, I happened to randomly stumble onto a
software called MLCAD, the well-known program which allows
users to virtually build with bricks on the PC. It didn’t take me
long to fall in love not only with the software but with LEGO
again. Using this software was pretty convenient for me, since
at that time I didn’t have any of the bricks from my childhood
anymore. What a dream to be able to build anything using any
kind of bricks… in any color!
But it didn’t last very long and soon I started to feel the need
for something more realistic: that’s when my long journey in the
Computer Graphics (CG) world started.
After long tests and investigations I determined the best
strategy for transferring models from virtual LEGO CAD
software to a 3D CG software specialized in photorealistic
rendering.
I then started to have so much fun that I was dedicating every
single minute of my spare time to it. This passion got so
serious that I started creating books about cool LEGO models.
Today the most rewarding feeling is whenever a reviewer
comments on the photography in my books without having
realized that it’s not photography at all, but all computer
generated instead.

Over the years I have had several requests from people asking
how I generate my renderings and whether I could share some
of my secrets.
Well, the truth is that achieving a level of photorealism able to
fool people is not as trivial as you might think, there’s no two
ways about it. In other words there is unfortunately no magic
trick here: highly accurate photorealistic rendering is time
consuming.

However, in this article I will do my best to explain the basic
golden rules behind great CG renderings and I will describe
the techniques I developed over the course of the years to
generate the images for my books. In addition, I will mention a
few of the newest tools which allow the achievement of decent
results in an impressively short time.

II. The Golden Rules

So, what does it really take to generate highly photorealistic
LEGO model images? Generally speaking I would say that
great attention needs to be paid to details, because it is the
details that eventually makes the fi nal render look real.
But let’s start with the 3 most fundamental key points you need
to consider in the process of generating great renderings:

• The 3D model’s accuracy
• The model’s materials
• Scene illumination

Each of these is equally important. Just like with a group of
climbers roped together, if one falls there is a chance that they
all fall. Let’s elaborate more on the above points.

A. The 3D model’s accuracy

The world we live in is analog, and so are we. What we see is
all analog at the source since our eyes are analog sensors.
Computers, however, are digital. Information is represented
with discrete quantized data using digital bits. This of course
applies also to the 3D CAD environments. This entails for
example that a circle in CAD software is not a perfect a circle,
but a polygon with enough sides to make it look circular. The
more sides/edges your object has the more “analog” it will look.
So, if you want to generate a photorealistic render you have no
choice other than to have an accurate 3D model, which means
having it composed of a very high number of polygons. There
is indeed no way to create a good picture if your model is not
accurate and does not contain enough details. The following
image illustrates just this concept.

In the world of bricks there are a range of sources available
for virtual parts, but the tough reality is that the parts models
in these libraries are not entirely accurate. This of course
was done by design, in order to allow the handling of bigger
assemblies, but it simply doesn’t help in the rendering process.

B. The model’s materials

The way we see the world around us with our eyes is the
complex result of laws of physics affecting the light’s path
before and after it hits objects. There are several fundamental
concepts like refl ection, refraction, and diffraction just to
mention a few. Every material behaves differently which results
in an effect which our mind associates with real.

So, the second thing you really need are materials (in the
CG world also called shaders) to assign to your model which
generates realistic effects. If this is not done properly, your
model will simply look dull and unrealistic.

Virtual LEGO®
The key to amazing renderings

By Mattia Zamboni, brickpassion.com

Fig. 1. A low polygon pig on the left, a highly detailed one on the right. Which one is the most
accurate?

17

Take a close look at the following fi gure:

Again, it’s the refl ections, refractions and all the real life
physics phenomena which brings life to the models in your
scene.

C. The scene illumination

What is the key factor to good photography? One word:
lighting.
Just like in photography, lighting plays a fundamental role
here, because depending on how your scene or subject is
illuminated it can look appealing or, on the contrary, it can look
fl at.
Just consider for example how a picture of a landscape can
change depending on the time of day the picture is taken.
Generally speaking, you want to create lighting such that
it emphasizes the edges and eventually provides more
volumetric information.
The next fi gure should help to clarify this:

Since we are trying to create photorealistic renderings, it is
important to invest time in playing with lighting, as this factor
contributes no less than the two previous ones to realism.
The subject, the materials and the illumination: we want
everything to look as real as possible.

With that being said let’s take a look at what tools and solutions
are available out there to render LEGO models.

III. The Available rendering solutions

There are several options available nowadays to generate
realistic renderings. Here is a list of the most common:

1) POV-Ray: this has been the most popular and
documented free rendering solution in the past. It isn’t
necessarily trivial to exploit its features and its render
engine is not very fast.

2) Bluerender: currently this is one of the simplest
choices out there. This free software can take your LDD
fi les (LEGO Digital Designer) and generate renders in a
less than 15 minutes. It unfortunately doesn’t produce
shine on the transparent parts.

3) Mecabricks: This is natively an online LEGO editor.
Its ecosystem includes among its many features the
possibility to generate decent renders.

4) Custom process: this solution essentially involves
transferring your model from either LDD or an LDraw
based editor to a powerful rendering software. There
are free options like Blender, and many commercial
(and sometimes expensive) products like 3D Studio
Max, Cinema 4D, and Maya just to mention a few. More
recently, very simple software solutions dedicated to
rendering have been introduced, with Keyshot being one
of the most popular.

In my case I decided years ago to go for the last listed option.
It is by far the one with the steepest learning curve, but if you
like CG graphics, the invested time is well worth it. Last but not
least, this option comes with an extra bonus: once you are able
to create a nice render, you can start to animate it!

IV. My solution

The main reason for my choice is that it is really the only
one offering no limits in what you can create, and the fi nal
rendering quality provided is limited only by your skills.
My personal favorite is 3DS Max and I am using it in
combination with a great converter by Okino Computer
Graphics to import models.

In order to generate hyper realistic renders, however, there are
a few obstacles to overcome so as to comply with the above
mentioned golden rules.
The most relevant is that the imported model is not very
accurate (low polygons). As mentioned above, LEGO CAD
editors use rather low-detail parts.
Although there are high quality parts libraries available (such
as LGEO for POV-Ray), for my tool chain I couldn’t use it.
In addition I wanted to add even more details and I therefore
started to create my very own library by remodeling the bricks
from scratch.

The next fi gure shows an example of a part:

Fig. 2. In the above scenes the models are identical, but one has more realistic materials
applied. I’m sure you can tell which one.

Fig. 3. Which illumination provides the most interesting effect on Tomb Raider’s Lara Croft?

18

For some parts I decided to go crazy by adding even further
details, which helped me in close-up shots to bring realism to
the next level.

The next challenge was to replace the low accuracy parts with
the highly detailed ones. This can of course be done manually,
which by the way is what I did for all the models included in the
“LEGO Build-it books: Amazing Vehicles”. But for large models
this can take ages. It was when I was contributing to the cool
buildings of the “The LEGO neighborhood book” that I started
to write a script to perform the automatic parts replacement
which picks parts from my library.

Once this step is done we are ready with a very accurate
model, so it is now time to dress the model with the proper
materials.

To achieve this goal you need shaders which simulate the
materials used by LEGO. Luckily the amount of these is
limited: it is of course for the vast majority the typical ABS
plastic (in several different colors). Then the transparent plastic
(again in several colors), the rubber for tires, and some special
material to give silver/golden/chrome effect to the painted
parts. I had to spend quite some time tweaking the materials’
parameters in order to get realistic results, but this is a one
time job and once fi nished you have your own LEGO materials
library.

A trick I found was to use a visual setting in the materials
parameters which shaves off a tiny bit of the edges of the

bricks only at rendering time. This results in a very realistic
look, compared to the native sharp edge defi ned in the 3D
elements. It also allows me to keep the models simpler.
On top of this let’s not forget about stickers or painted parts.
This is a whole separate job, in which you need to digitalize the
artworks by scanning and importing them as bitmap textures
into the software to be applied to parts.

For the parts replacement, I also wrote a script to perform an
automatic material assignment based on the original color of
the imported model. To help in this process I included a few
smart features which for example recognize specifi c parts like
tires by their part number and automatically assigns the black
rubber material.

Once materials are properly assigned it is time to have fun
by preparing the scene and lighting. This setup is no less
important than preparing a stage for a photoshoot.
This involves placing a background and a set of lights to
illuminate your model. As fun as it is, this part can be one of
the most time consuming. You want to make sure the lighting
on the model is suffi cient to create a pleasant shadow and
provide good refl ections which are not too strong.

To save time at this stage I again automated the process,
which in this case uses a brute force method which rotates the
lights all around the subject and generates several previews.
This process can take a while but at least it can proceed
unassisted, allowing me to just play the role of artistic director.
I just have to look at all the previews and choose the one I like
best, and if needed perform some fi ne-tuning on it.

After the fi nal rendering has been generated there is the post
processing step in which I enhance the picture by working on
brightness, contrast, and colors, and I apply some additional
fi lters to make the image look the best possible. This step is
really needed since it is not possible to have the rendered
images look perfect right out of the rendering engine. During
this phase it is suitable to use a color calibrated monitor.

At this point the model is highly detailed, it has realistic
materials applied to it and a good lighting setup. Everything
looks perfect, but… even too much! In fact this sometimes
turns out to be a problem with renderings: they look too perfect
which eventually makes them look fake. I therefore developed
one of my favorite functions to add to my toolset, which I
named RealWorld™.

RealWorld™ is an advanced piece of software which analyzes
your 3D LEGO model and automatically introduces realistic
imperfections in the way the model is assembled.

Fig. 4. Comparison between a part as imported (left) and the remodeled version (right) from
my library. The level of detail I packed in includes tire text, part number and LEGO logo.

Fig. 5. Example: in the “Plate 1x1 with vertical clip” I decided to include the molding marks
on the bottom side. A scrupulous eye can notice these details in close up shots.

Fig. 6. Example of rendering from my last book. Take a look at the soft pleasant shadows,
generated in this case by a natural lighting (HDRI ambient image).

19

This is a list of just a few features of RealWorld™ :

• Logo on studs: all the bricks get rotated to make
sure the logos are not oriented in the same direction
(especially 1x1 round plates!)
• Creation of seams: all the bricks gets scaled by a
random factor very close to 1 (example 0.996), which
shrinks them ever so slightly generating the typical
seams/gaps between bricks and it is performed so that
they are not all identical.
• Parts rotation: Bricks which have a small play while
assembled (for example 1x1 bricks/plates/tiles) gets
rotated by a random tiny fraction of angle.
• Parts tilt and lift: all bricks which don’t have other
bricks placed on top of them (especially tiles) gets lifted
and tilted around their x and y axis by a very tiny random
amount. On surfaces (i.e. a sidewalk) this creates a nice
non uniform assembly effect.
• and more …

“Details make perfection,

and perfection is not a detail.”
 - Leonardo Da Vinci

Once I developed these techniques to process models and
generate renderings automatically, I decided to raise the bar
further. My dream was indeed not to limit all this to a simple
model, but to extend it to entire dioramas.
This turned out to be a major task since I had to revise all the
software written up to that point and optimize it thoroughly
by paying special attention to speed and memory allocation.
Importing and processing 500 bricks is indeed not the same as
with 100,000 bricks.

The additional required step has been to get my hands on
a very powerful workstation able to process all that data in
reasonable time. I ended up building a custom station with the
following specs (for the nerds among you ;-)):

 2x CPU E5-2640 Xeon CPU
 8 cores/16 threads
 64GB DDR4 RAM
 512GB SSD storage
 NVIDIA GTX Titan X with
 12GB VRAM

A due note is that generating highly realistic renders can
require a lot of CPU power, mostly when generated at very
high resolutions, with accurate shaders and with DoF effects.
The next image shows an example of rendered diorama from
my book “Tiny LEGO Wonders” designed by Alexander Bugiel.
I must admit that at this point I am quite happy with my current
results even if there is defi nitely still room for improvement.
The content of this article is the result of more than 5 years of
CG techniques and scripts development. However, the biggest
challenge has been to explain and summarize all of this in a
few pages, and I hope I was at least able to transmit some of
my passion about this fantastic world!

Mattia Zamboni
www.brickpassion.com

You can see some of the fabulous renders made by Mattia
Zamboni in the following Nostarch titles:

The LEGO Build-It Book I / The LEGO Build-It Book II / The
LEGO Neighborhood Book / Tiny LEGO Wonders
#

Fig. 7. One of the most appreciated renderings in my latest book was rendered at 5125 x
3375 pixels and took about 16 hours to render.

20

