
Take control of your MINDSTORMS bricks (3)
Text and images by Oton Ribić

If you have been with us for the two previous articles, this

time is where the fun part begins: assembling our first ‘real’
messages to be sent to the pBrick to order the performance of

an action. For now, we will stay focused on the EV3 system,

whereas the NXT (which is a tad more complex) will be

covered later.

As explained previously, there is a standard ‘header’ for each

message, i.e. a section that announces how long the message

will be, along with some other parameters. This time, let us go

further and construct the body of our message for an EV3.

Initial parts

Let us begin by trying to rotate a motor, which is probably the

most common operation anyway. There are various ways to

control a motor, including specific steps, how much to turn, at
which speed and power, ramp-up, coast, etc. ― but there is
also a much simpler operation, involving just making a motor

turn indefinitely. That will be our starting point.

All the bodies of such messages are constructed by specifying

a set of variables, i.e. parameters required for the operation ―
such as speed and motor in this case, and other data for other

types of jobs ― and then sending the instruction to make it act
on the received data. In our first case, we need to specify three
parameters: which motor we intend to turn, at what power or

speed, and in which direction. Let us try with the first motor, at
75% power, in a positive direction.

First we need to calculate the code of our motor, as it

keeps being used throughout the message. It is a rather

straightforward job of exponentiating 2 to the power of the

motor number, with the first one being zero. So, the first
motor’s code is 1, the second’s 2, then 4 and finally 8 for the
fourth.

This can be used to assemble the first part
of our message, featuring polarity. If we

want to turn the first motor in the positive
direction, our message will specify this

with bytes: 167, 0, 1, 1. The 167, 0 is fixed;
the next number is a code for the motor,

and the final 1 specifies positive direction.
Otherwise, the final byte would have been
63.

You may be asking yourself ― why these
codes exactly? Why 167 of all numbers? Well, the simplest and

the most straightforward answer is that this is the ‘language’

EV3 uses to communicate. Though it may seem arbitrary, there

is an underlying logic which supports it, though getting deeper

into it would expand this article beyond tolerability, so let’s for

now just stick with the numbers we have.

So, our message starts with 167, 0, 1, 1. Let’s continue by

specifying the speed we want it to turn at. The bytes we need

are 165, 0, 1 (again the motor), 129, and finally, the power
percentage as a number ― in our case, 75. And then, on we
go with the final instruction to ‘make it happen’: 166, 0, 1.

For the assembly!

All right, we’ve collected all we need and we can start building

our message. Let’s begin by concatenating these fragments

in the aforementioned order, to get 167, 0, 1, 1, 165, 0, 1,

129, 75, 166, 0, 1. This is the body of our message containing

three segments, specifying the direction of rotation, its desired

speed, and the instruction to start.

But, remember from the last time: we have to add a header to

this body to construct a final, proper message which the EV3
can receive and interpret. There are two bytes which specify

the number of this particular message, so that the EV3 can

refer to it when replying. We can freely keep them at 0, 0 for

this exercise. And the number of globally used variables is also

0. So let’s add three more zeros to the front of our message

body.

And then there is the final step: in order to be sure the
message has been received properly, the EV3 pBrick needs

to know how long it is. So let us count the number of bytes

the final message contains, to come up with the figure 17.
We have to represent this as a two-byte number in front

of the entire message, with the smaller byte (properly said

in engineering: least significant) being first. So the length
designator (which doesn’t count itself!) will turn out to be 17, 0.

This makes our final message look like this: 17, 0, 0, 0, 0, 0, 0,
167, 0, 1, 1, 165, 0, 1, 129, 75, 166, 0, 1.

Just go ahead and send these bytes to the serial port you have

created for the purpose and connected the pBrick to, according

to the data from our previous articles, and the first EV3 motor
should start spinning! Of course, the question of

how you prefer to send these bytes over to the

pBrick is entirely down to you, i.e. down to your

choice of the language or system you prefer using.

C and its derivatives mostly have native support

for writing directly to ports; Python has an excellent

PySerial library; most at least half-decent languages

have at least one way to do so. Don’t worry, serial

ports are such a stable and mature technology, that

there is no question of your system not supporting it.

Keep in mind that this instruction just says ‘start spinning’

without any time or turn limit. So it will indeed keep turning

until told otherwise or (obviously) turned off. In the future we

will dig a bit deeper into a more complex form of the turning

instruction, which lets the user control exact movements and

parameters.

But before that, we will have to examine how the pBrick has

actually replied while obeying the above messages. Although

it is not always mandatory, any kind of controlled movement is

unthinkable without monitoring the pBrick’s replies and acting

upon them. So stay tuned!

#

93

	In this issue of HispaBrick Magazine
	Editorial
	Jørgen Vig Knudstorp
	Jan Beyer
	Brickset
	The Brothers Brick
	Eurobricks
	Timeline
	HispaBrick Magazine Kiosk: Design
	Creating the HispaBrick Magazine Kiosk Instructions
	HispaBrick Magazine Kiosk: Instructions
	HispaBrick Magazine Staff
	HispaBrick Magazine Staff: Lluís Gibert (a.k.a. lluisgib)
	HispaBrick Magazine Staff: Jetro de Château (a.k.a. linmix)
	HispaBrick Magazine Staff: Jose Manuel Ruíz (a.k.a. satanspoet)
	HispaBrick Magazine Staff: Antonio Bellón (a.k.a. Legotron)
	Alien
	Interview: Carlos Méndez
	Interview: LEGO Technic
	Building LEGO trees
	The Secrets of Modular Building
	The Development of the Friends Minidoll
	LD Digital Mosaic Creator
	Programming the EV3 with Swift Playgrounds
	Modular Integrated Landscaping System (VIII)
	Gearbox
	Minidolls vs. Minifigures: Head On
	Take control of your MINDSTORMS bricks (3)
	Exhibition of LEGO constructions at the XVI Collectors Fair in Mungia
	Review: 4002017 - Nutcracker
	News first half 2018
	Review: Building Smart LEGO MINDSTOMRS EV3 Robots
	Benny’s Corner
	Desmontados by Arqu medes
	How to collaborate with us
	Our collaborators on the Internet

