
Take control of your MINDSTORMS™ bricks
by Oton Ribić

Having assembled and sent our first messages to an EV3
brick last time, and making that motor finally turn, now it is
about time to expand on this concept and establish a reliable
communication sequence.

Replies and synchronization
Upon each message successfully sent to the EV3 Smart Brick,
it will always reply, even if the message’s instructions cannot
be obeyed or they contain errors. This reply gets sent only after
the instruction to be done by the EV3 is fully completed. This
is the key to establishing a solid synchronized communication,
i.e. ensuring that one instruction gets completely done before
another one begins, which is essential in practice.

Replies from EV3 are received through a dedicated serial port
as well, the one designated for incoming traffic (check the first
article in the series to remind yourself what this is about). What
you have got to do through your code is send a message to the
EV3 Smart Brick and then, depending on your implementation,
either wait until the computer gets notified (called back) that
some data awaits reception, or keep checking repeatedly if
there is any data to be read. Then get the message proper
from the serial port, and interpret its contents if some value
has been asked for, e.g. in the case of reading sensor values.
Afterwards, the entire process can be repeated.

These replies by the Smart Brick follow the same structural
rules as the messages send to it ― the first two bytes indicate
its upcoming size, and the rest is the message payload. We
won’t go into analyzing all possible replies yet as that would

expand this edition into an encyclopaedia, but let’s look at how
the standard “Done, everything OK” message from the EV3
looks like.

So, it has a total length of 5 bytes, among which the first two
indicate the remaining size of 3 bytes (in reverse!). Then, the
next two indicate the message ID it refers to having been
completed, and finally the value 02 confirms everything has
been done. Remember, if there are multiple messages sent
asynchronously, then the Message ID it refers to is useful ―
but if we follow the strict synchronized principle, then it can and
will always only refer to one message in its “inbox”, whose ID
we had previously set to zero. Or, in two-byte chunks: 00, 00.

To sum up in general: unless you’re asking for the EV3 to
provide some value back, which we will be covering later, it will

reply with 3, 0, 0, 0, 2 as a confirmation that everything is OK,
or something else if some error happened. If you want to learn
more about these error messages and interpret them, check
here: http://ev3.fantastic.computer/doxygen-all .

Encoding values
Before we dive into more complex messaging next time, there
is one necessary digression to make, regarding the system
used for sending to and receiving numeric values from the EV3
Smart Brick. As long as we are dealing with small values, such
as percentage of power to be used on a motor that needs to
be rotated, it is simply directly encoded as a byte value. One
of the examples was in the previous instance where we had
converted the number 75 directly into its byte value, and sent it
off packaged in the message.

The approach is different, however, when dealing with numbers
that specify more complex parameters or larger values. The
main example we will face is making the motor turn a specified
number of degrees, i.e. a given angle. This value may be
much too large to fit into one byte ― even one full motor turn,
of 360 degrees, would be too large to fit into one byte. Hence,
EV3 uses C structures, specifically, 4-byte floating point C
structures to represent numerical data.

Unless you’re an experienced programmer, that probably
doesn’t mean a lot, but let’s put it this way: there are various
systems for encoding values into chunks of zeroes and
ones, and decoding them back to “proper” numbers. LEGO®
engineers chose that one among them, and unless you’re
working with C or some similar language where this is
supported natively, it will be your code which needs to perform
this encoding step. Fortunately, this is a fairly standard thing,
and all popular languages have some way to elegantly perform
it. E.g. if you are using Python, a struct library is readily
available as a part of the standard package. (If you want to go
into detail, you’ll need struck.pack(‘f’,value) function.)

In any case, a couple of queries on Google, with keywords for
“C structs, number conversion” and your chosen language,
should set you on the right track. Just make sure you’re
interpreting the number as a floating-point number, even if
the value you are using does not need a decimal point. If you
want to test whether your conversion works right, here are
some examples; 360 should convert to 0, 0, 180, 67, and -360
to 0, 0, 180, 195. Zero converts to four zeroes, and 12.34 to
164, 112, 69, 65. This conversion will be essential for any
further work, so make sure you’ve got it working well before
proceeding.

And speaking of proceeding ― we will use these very values
in the next edition, where we will combine the knowledge
from the previous articles and this one to fire off some more
complex commands, such as controlled motor movements.
Stay tuned!
#

BYTE NO. 00 01 02 03 04

BYTE VALUES 03 00 00 00 02

DESCRIPTION Length Message OK

26

http://ev3.fantastic.computer/doxygen-all

	In this issue of HispaBrick Magazine®
	Editorial
	Great creators of the world: Vesna
	Interview: LEGO® Architecture
	Modular Integrated Landscaping System (IX)
	Programming the EV3 with Swift Playgrounds - Lesson 3 – Curved Move
	My SEQ story
	The LEGO® Trains Book … the story continues
	Take control of your MINDSTORMS™ bricks
	2012 LEGO® Friends Minidolls
	BRICK QUIZ - A NEW HOPE
	BRICK QUIZ - A NEW HOPE ANSWERS
	HispaBrick Magazine® Event 2018
	Review: 70840 - Welcome to Apocalypseburg!
	SPIKE Prime
	4999 - VESTAS Wind Turbine (2008) vs. 10268 - VESTAS Wind Turbine (2018)
	Happy summer holidays!
	Benny’s Corner by Luigi Priori
	Desmontados by Arqu medes
	How to collaborate with us
	Our collaborators on the Internet

