
Take control of your MINDSTORMS bricks (5)
by Oton Ribić

Finally, the combined knowledge we have collected throughout
the previous four articles should now enable us to reach the
ultimate goal we strove for: sending commands to our EV3
smart bricks via Bluetooth. Of course, the handiest and the
most frequently used type among them is performing controlled
motor movements, and that is exactly what we are going to do.

Assembling the message components

Without trying to explain again each of the command message
components, let’s just go ahead and work on an example. Let’s
suppose we want to turn the motor connected to the port no.
2 for one and a half turn (540°) in positive direction at three
quarters of full speed, i.e. at the throttle of 75%. And build the
message bit by bit.

1) Header. Firstly we have got to set up a header of the
message, as discussed in the previous articles. Since we are
not going to use it for anything “fancy” this time, we will just
begin with five zeroes, i.e. five bytes with values of zero.

2) Direction. Now we will want to set the motor direction for
this command. This is done by adding bytes 167, 0, then the
number of the motor which is 2 in our case, and finally 1 for
forward, or 63 for reverse direction. So we have got 167, 0, 2,
1 here.

3) Movement values. Then comes the main part, the
movement instruction itself. It begins with 174, 0, then
continues with the number of the motor, again 2. Next is the
speed: it is the value 129 followed by the desired speed which
yields 129, 75. Next is a rampup value for which we can use
zero encoded to five bytes, which is 131, 0, 0, 0, 0. Then finally
the angle we intend to turn, 540 encoded in five-byte structure,
which is 131, 28, 2, 0, 0. Then the rampdown value which is
again zero, turning out to 131, 0, 0, 0, 0. Finally, the parameter
that says to brake once completed, which is a simple final byte
1 for this section.

4) Instruction to start. Having set all the parameters, we
will now add the instruction for the motor to actually start
this meticulously prepared work. It is rather simpler: 166, 0,
followed by the number of the motor, which is 2.

5) Wait for completion. If we want the EV3 to perform the
movement fully before going onward to the next one, we will
now add 170, 0, 15, which is essentially “wait for completion”.
Without it, the next instruction will begin while the motor turns,
which you may want, or may avoid.

6) Length. Let us finally count the length of the message we
have assembled: it contains 36 bytes. So we put 36,0 in front
of it.

If everything went well, we got the following message and
structures.

36, 0, 0, 0, 0, 0, 0, 167, 0, 2, 1, 174, 0, 2, 129, 75, 131, 0, 0, 0,
0, 131, 28, 2, 0, 0, 131, 0, 0, 0, 0, 1, 166, 0, 2, 170, 0, 15

And each part corresponds to its own purpose in matching
colors: Length, Header, Direction, Specifying motor, Speed,
Rampup, Amount to turn, Rampdown, Brake when completed,
Begin rotating, Wait for completion.

Sending the message

At this point we are ready to “fire” these final 38 bytes to the
EV3 brick via the virtual serial port encapsulated within the
Bluetooth protocol. As explained in the previous articles, the
EV3 brick will acknowledge receipt of this message 0 when
finished. We can then send further messages if we desire so.

If you want to go to the full lengths and implement the encoding of
the values into five-byte structures, here are the values for each
byte. This assumes that the ampersand (&) is used as a binary
AND operator, and >> a binary shift to the right by a given number
of places. (This works “as is” in Python.)

byte1 = 131
byte2 = value & 255
byte3 = (value >> 8) & 255
byte4 = (value >> 16) & 255
byte5 = (value >> 24) & 255

Of course, this works only with integers, but that is anyway the
underlying assumption for this entire tutorial. If you will be working
with divisions of numbers, it is always a wise precaution to round
any numbers entering this calculation down into integers.

Rotating multiple motors at once is done by simply constructing
and firing away independent messages, one for each motor,
and not enabling the “wait for completion” parameter in them.
That way all the rotations will start and proceed simultaneously.

However, at this level there is no simple and foolproof way to
control the position of each motor at every particular moment.
I.e. if we start one motor at full speed and the other one at half
speed, it is only an optimistic assumption that, at any given
moment afterward, the latter will have done exactly half the
movement of the former.

If you’re after very accurate simultaneous movements, e.g.
for drawing a diagonal line with an X-Y plotter, consider
splitting the movements into smaller segments, and using
lots of reduction to further iron out any differences between
the motors. Of course, the price to pay in this case is slower
execution, so you will have to find the formula that works the
best for you.
#

37

	Editorial
	Star Wars Boost Droid Orchestra: The making of
	Visit the LEGO® Store in Shanghai
	Great creators of the world: Antha
	Traditions Revisited: Christmas Cards
	BRICKERSVILLE
	Fairground Amusement Sets
	GBC Circuit at the 2018 Munguía Collector’s Fair
	Programming the EV3 with Swift Playgrounds
	2013 LEGO Friends Minidolls
	Sets with an App
	Welcome to CONTROL+
	Sets Second Semester 2019
	TopMoc: The Micro Lord of the Rings
	Benny’s Corner by Luigi Priori
	Desmontados by Arqu medes
	How to collaborate with us
	Our collaborators on the Internet

