
18 HISPABRICK MAGAZINE NOVEMBER 2020

Having navigated through the tricky waters of 
the EV3 control via Bluetooth in previous articles, 
in this final episode of the already lengthy 
Mindstorms Control series we will get back to the 
somewhat aged, yet still very much vital, NXT. It 
supports Bluetooth communication as well, and if 
your hardware allows for it, there is no difficulty 
in combining NXT and EV3 Smart Bricks at once, 
or even multiples of each type simultaneously.

First of all, we should emphasize that the NXT 
is a somewhat different ball game than the EV3 
when it comes to wireless control. Whereas the 
EV3 allowed us to compile messages to make 
it directly "obey orders", in the case of NXT it 
is simpler to communicate with a dedicated 
program running on it, which listens to the 
incoming data and executes the commands 
accordingly. This makes things more complex, as 
the program has to be running on the brick, but 
it makes the communication itself a little easier. 
Of course, one may decide to forgo the entire idea 
and flash the NXT with firmware to allow direct 
control–but that is a rather complex approach. 
As said before, in these series we will be focusing 
only on the stock firmware.

Program listening and executing on the 
device-side

Therefore, the first step will be to set up a 
program aboard the device. You may opt for a 
general-purpose one, or for one that specifically 
does what you require for the build in question. 
Here we will go for the general-purpose version, 
and you can easily adapt it further for different 
needs based on these principles.

When controlling motors, there are three 
essential values we need to convey to the NXT 
Smart Brick for each movement: the motor to 
be used, the amount to turn, and the power to 
apply while turning. In theory, one could argue 
that direction is the fourth parameter, but we 
can embed this into the number specifying the 
amount to turn, by using either a negative or a 
positive number.

Assuming we load these values in the 
mentioned order, a program outline would look 
something like the following:
• Listen to the Bluetooth until messages are 

available
• Load a "triplet" of values from Bluetooth–

Motor, Amount and Power

• Assign the Motor value to the corresponding 
parameter of the Motor instruction in the NXT-G

• Check if the Amount is below zero, and assign 
the result to the NXT-G Motor instruction's 
direction parameter

• Take the absolute value of Amount and assign 
it to the angle parameter of the instruction 
in NXT-G

• Assign the Power value which is a percentage 
to the corresponding parameter of the 
NXT-G instruction

• Perform the rotation itself and wait until 
finished (or not–if you want to use a special 
parameter for that!)

• If you want to be able to wait for the instruction 
to finish, send a message back via Bluetooth

• Repeat from the start unless an instruction for 
termination is received, which is optional

To give it a more understandable shape, this is an 
NXT program that listens to the Bluetooth, and 
when it receives values, e.g. 2,-720,50, it rotates 
the second (B) motor two turns in the reverse 
direction at half the power. Then it continues 
listening for a new triplet of numbers, specifying 
the new instruction.

Motor control will typically be 
sufficient for many projects. 
Incorporating sensor readings will 
work perfectly fine too, but at a 
cost of increased complexity both 
on the computer and the NXT side.

by Oton Ribić



HISPABRICK MAGAZINE NOVEMBER 2020 19

This is all that's necessary for the remote 
control to work from the device side; just connect 
your computer to the NXT Smart Brick via 
Bluetooth as described in the first articles in this 
series, and start the newly-made program.

Control from the computer
Now we need to switch over to the computer 

side and set up a program that will transmit 
the three values required to perform a motor 
instruction to the NXT, and optionally wait for the 
acknowledgement.

This time, the assembly of the messages is 
much more straightforward than was the case 
with the EV3. Essentially, we will need to encode 
each of the input number parameters to a 4-byte 
code, representing a floating-point number. 
Check the same technique discussed previously 
in the case of the EV3, but as a quick reminder, 
for Python language for example, you can use 
"struct.pack('f', number)", which returns the 
necessary 4 bytes. Then, attach a zero-byte at the 
end, and the following byte sequence to the start: 
5, 0, 0, 19, 10, 0, 1. This is a header telling the NXT 
Brick what is actually being communicated.

You should end up with a 12-byte sequence for 
each encoded number. E.g. encoding the number 
720 should yield 5, 0, 0, 19, 10, 0, 1, 0, 0, 52, 68, 
0. Finally, just assemble the final message by 
putting the three 12-byte codes one after the 
other (concatenate them) in the required order. 
The 36-byte message specifying the motor, the 
turning amount and the power can then be sent 
off to the NXT.

How to tackle synchronization
The procedure described above should make 

your NXT turn as instructed. However, the next 
step on the computer side is to get notified once 
the NXT has actually completed its task, so the 
next one can proceed. Previously in the NXT 
program you may have created a reply message 

for the computer–and now the computer is the 
one that has to react to it.

Regardless of what computer language 
you have decided to use, keep firing away the 
byte sequence 5, 0, 0, 19, 10, 0, 1 towards the 
NXT, which checks the device's "inbox" for any 
awaiting messages and transmits them if found. 
Repeat the process, and fetch any messages when 
they arrive. Typically just a simple reply by the 
device could be enough, but you can go a step 
further and have the NXT send a specific value, 
e.g. a string "DONE" or "Acknowledged", to be 
doubly sure. Then, on the computer side, you 
should disassemble the message received from 
the NXT, and check whether the specified string 
is contained therein. If yes, all is well; if not, you 
know that something on the NXT side went awry.

turn a motor, or if it is blocked from turning to the 
required extent, the instruction will essentially 
never finish, and your entire fine-tuned system 
will get stuck. Therefore you may want to add a 
threshold, or expand your NXT program to report 
back a special message (read by the computer) if a 
given timeout period has been exceeded, and the 
instruction aborted.

If your motors' motions seem to be correct but 
you think wrong ones are being turned, keep in 
mind that the motor A is really identified under 
number 1, whereas in many languages you may 
specify it as zero, which will not work.

This communication scheme reveals how the 
further expansion of functionality should work. 
You can expand both sides to communicate four 
parameters, among which the first one would 
be the type of instruction (motor, read sensor, 
or anything else), and the remaining three 
would serve as parameters for that very type of 
instruction. This requires a much more complex 
program on the NXT side, but it is doable.

Or you can try a middle line, and for your 
specific project set a rule, e.g. if the specified 
motor number is 10, instead of turning the 
non-existent tenth motor, the NXT will actually 
interpret it as reading the distance sensor and 
sending it back in the reply value–which of course 
should be equally prepared and parsed on the 
computer side.

In any case, regardless of whether you opted 
for the EV3, NXT or both after all, we will not even 
try to fool you into thinking you will not need to 
experiment a bit. But it will be fun, and we can 
testify from our own experiences that it is not 
really that difficult once you get the grasp of the 
basic concepts. At that point, the feeling of being 
able to control multiple motors and sensors via 
a program running on your computer will reveal 
an entire new horizon of possibilities. We're 
looking forward to checking out your advanced 
robotics stuff!

Expanding further
This example as such should give you a general 

idea of how the communication works, how the 
NXT interprets the message, acts upon it, and 
reports back when finished. For basic projects 
where you require controlled motion, this should 
be more than enough. But if you need more, let's 
dive into several further points that may be useful 
or uncover some shortcuts for you.

It may be sensible to take care of at least 
minimal data validation on the NXT side. If the 
given motor power parameter is too low to even 

Nothing speaks against connecting to, and 
controlling multiple NXT and EV3 bricks 
simultaneously. But keep in mind you will have to 
configure serial ports for each such Smart Brick 
individually

A simplified sequence between the computer and the NXT, communicating via Bluetooth


